Carrier-Envelope Phase Stabilization of Modelocked Lasers
نویسندگان
چکیده
Carrier-envelope phase stabilization of few cycle optical pulses has recently been realized. This advance in femtosecond technology is important in both extreme nonlinear optics and optical frequency metrology. The development of air-silica microstructure fiber was an enabling technology for performing phase stabilization. The microstructure fiber provides a group-velocity zero within the spectral region that can be accessed with titanium sapphire lasers. The presence of a group-velocity zero allows the output spectrum of the laser to be broadened so that it exceeds one octave, which is necessary for our phase stabilization technique. We will present the basics of the technique and role played by the microstructure fiber. Measurement of the nonlinear phase shift in the fiber is also performed to determine the contribution of amplitude to phase noise conversion.
منابع مشابه
Carrier-Envelope Offset Stabilized Ultrafast Diode-Pumped Solid-State Lasers
Optical frequency combs have been revolutionizing many research areas and are finding a growing number of real-world applications. While initially dominated by Ti:Sapphire and fiber lasers, optical frequency combs from modelocked diode-pumped solid-state lasers (DPSSLs) have become an attractive alternative with state-of-the-art performance. In this article, we review the main achievements in u...
متن کاملCarrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis
We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency ...
متن کاملPhase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser.
We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO₄ (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer...
متن کاملFully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser.
We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm....
متن کاملGigahertz frequency comb from a diode-pumped solid-state laser.
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007